
Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

Application of Linear Algebra for Optimizing

Collision Detection in Precision Parry-Based Combat

Systems for Sekiro-like Games

M. Rayhan Farrukh, 135230351,2

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113523035@std.stei.itb.ac.id 2rayhan.farrukh@gmail.com

Abstract—Collision detection is a crucial part of game

development, paricularly in games requiring meticulous

precision-based mechanics. This paper explores the

application of linear algebra in optimizing collision detection

algorithms, specifically Axis-Aligned Bounding Box (AABB),

and Separating Axis Theorems (SAT). These algorithms were

implemented in a simulation designed to showcase their

integration into Sekiro-like parry-based combat system.

AABB delivers efficient calculations for the broad-phase

collision detection, while SAT is useful in narrow-phase

collision detection for its precise calculations. These

algorithms combined create a balance between performance

and accuracy, crucial for implementing precise mechanics,

like Sekiro’s combat system

Keywords—Collision Detection, Linear Algebra, Sekiro-

like, Video Games

I. INTRODUCTION

Sekiro: Shadows Die Twice is an Action-Adventure

Video Game developed by FromSoftware and published by

Bandai Namco. It was released in 2019 and received

critical acclaims and even winning The Game Award’s

Game of The Year 2019 for its unique and revolutionary

gameplay focusing on its combat system.

Sekiro was developed by FromSoftware under the

direction of Hidetaka Miyazaki who is known for his

revolutionary and visionary ideas for video games due to

his previous work on games like Bloodborne and Dark

Souls. Each game that was directed by Miyazaki has a

signature arduous difficulty, focusing on relentless enemy

NPC which makes the combat gameplay in these games

stand out from an ocean of action-adventure games.

However, within Miyazaki’s catalog of critically praised

video games, Sekiro stands out from the rest due to its

combat’s focus on precision parrying.

This combat system offers a truly unique experience,

blending intensity and fluidity with a fast-paced, almost

songlike rhythm that keeps player engaged. The precision

parrying mechanic is the centerpiece of the combat’s

design, demanding impeccable timing and accuracy. For

this system to work, it requires an exceptionally precise

collision detection to ensure each parry feels responsive

and realistic. This is where the world of Sekiro meets linear

algebra to deliver an awesome experience.

Sekiro has not only set a high bar for actio-adventure

video games but has also inspired a new wave of similar

games that expands upon its revolutionary combat system

to emulate its rhythm-like precision gameplay. By

leveraging concepts of linear algebra, the developers of

such games can refine their games, to ensure the precision

required to make these games work is implemented

optimally.

II. THEORETICAL FOUNDATION

A. Vector
A vector is a mathematical term that refers to objects

which has a magnitude and direction. Vectors are tipically

represented as arrows in a coordinate space where the

length corresponds to magnitude and the axis orientation

indicates the direction. A vector is represented as:

v = (𝑥, 𝑦)

Where x is the component along the horizontal axis,

and y is the component along the vertical axis.Vectors are

crucial for spatial representation and transformations and

commonly used in fields such as physics, computer

graphics, navigation, etc.

B. Vector Arithmetic
Vector arithmetic are mathematical operations

performed on vectors, such as vector addition, subtraction,

and projection. In collision detection, vector arithmetic is

used to calculate relationships between objects in a space,

such as their position, distances, and orientations. Key

operations for collision detection include:

1. Vector Subtraction (difference)

Used to compute displacement between two points.

For example, the vector from one objects’s center to

another can be calculated as:

𝑑 = 𝑝2 − 𝑝1 (1)

where p1 and p2 are the vectors of position of the two

objects.

2. Dot Product

mailto:113523035@std.stei.itb.ac.id
mailto:2rayhan.farrukh@gmail.com

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

Measures the alginment of two vectors. Dot product

is often used in Separating Axis Theorem to project

shapes onto an axis to calculate overlaps. For

vectors v = (x1,y1) and u = (x2,y2), the dot product is

calculated as:

v ∙ u = 𝑥1𝑥2 + 𝑦1𝑦2 (2)

3. Magnitude

The magnitude of a vector |v| represents its length

or size. For a vector v = (x,y), its magnitude is

defined as:

|v| = √𝑥2 + 𝑦2 (3)

This measures straight-line distance from the

vector’s origin to its endpoint in a coordinate space.

The magnitude of a vector can be used to normalize

a vector. A normalized or unit vector is a vector

with a magnitude of 1. For a vector v it is calculated

as such:

v =
v

|v|
 (4)

4. Distance of two vectors

The distance between two points represented as

vectors, is calculated using the magnitude of their

difference:

distance = |𝑝2 − 𝑝1| (5)

The distance is particularly useful in broad-phase

collision detection for determining whether two

objects are close enough to detect potential overlap.

For example, in center-based Axis-Aligned

Bounding Box, the distance along each axis is

compared to the sum of half their widths and

heights. This allows for quick way to detect

potential collision.

C. Projection
A projection is a mapping of a vector onto another

vector, by calculating only the part of the vector that

aligns with the direction of another. This operation helps

simplify calculations by focusing only on the parts shared

directionally between two vectors. The projection

between two vectors is calculated as:

𝑝𝑟𝑜𝑗 =
v∙u

|u|2 u (6)

where v is the vector being projected onto u. This formula

measures how much of v lies in the direction of u. If u is a

unit vector, then the equation is simplified to:

𝑝𝑟𝑜𝑗 = (v ∙ u) ∙ u (7)

where (v ∙ u) reperesent the scalar projection

(magnitude) of v onto u. Which when multiplied again

with u, it gives the directional projection, aligning the

magnitude with the direction of u.

D. Collision Detection
Collision detection is the proccess of determining

whether two or more object instersect or touch. In the

context of game environment this is crucial for creating

realistic interactions, like keeping characters from walking

through walls or clipping through the map. In practice,

collision detection is divided into two phases: broad-phase

and narrow-phase.

In broad-phase collision detection, the goal is to

quickly identify potention collisions by checking whether

two objects are close to each other. This phase usually

utilize simplified shape forms like bounding boxes for

efficiency. Once potential collisions are identified the

narrow-phase system is called, performing detailed

calculations to confirm the actual collision of the two

objects. An example of a broad-phase collision detection

algorithm is Axis-Aligned Bounding Box (AABB), whereas

an example of algorithm for narrow-phase is Separating

Axis Theorem (SAT). The combination of these two phases

ensures that collision detection remains efficient while

maintaining precision.

E. Axis-Aligned Bounding Box (AABB)
A bounding box is a rectangular shaped boundary that

encloses an object in a dimension. It is useful for

simplifying complex shapes into manageable rectangles so

that it can be used efficiently for tasks like collision

detection.

An Axis-Aligned Bounding Box is a bounding box

where the sides are aligned to the coordinate axes. In other

words, it is a bounding box that does not rotate. An AABB

is typically defined by two points, the minimum corner

(xmin, ymin), and the maximum corner (xmax, ymax).

Alternatively, it can be represented as a single point for its

center coordinate along with width and height. Collision

checks using AABB involve determining whether the

boxes overlap on both the x-axis and the y-axis, which is

done with comparisons of the edges position. This makes

it advantageous to utilize in broad-phase collision detection

due to its low computational cost.

Figure 1. Illustration of AABB Compared to Other

Bounding Shapes

Source: https://www.researchgate.net/bounding-

shapes.png

F. SAT
Separating Axis Theorem (SAT) is a popular algorithm

used for the narrow-phase of collision detection. It works

by projecting the shapes onto a series of axes and checking

if their projections overlap, if all axes overlap, then

collision occurs. Conversely if there is even one axis

https://www.researchgate.net/profile/Gang-Mei-2/publication/272093426/figure/fig9/AS:614344521965582@1523482556647/Bounding-volumes-sphere-axis-aligned-bounding-box-AABB-oriented-bounding-box-OBB.png
https://www.researchgate.net/profile/Gang-Mei-2/publication/272093426/figure/fig9/AS:614344521965582@1523482556647/Bounding-volumes-sphere-axis-aligned-bounding-box-AABB-oriented-bounding-box-OBB.png

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

where the projection do not overlap, then no collision

occurs. The axes used are the normals of each edge of the

object. SAT is used specifically for convex shapes. A

convex shape is a shape whereby for any line drawn

through the shape, only two points will ever intersect with

that line. Although SAT only work for convex shapes, it

can be used for non-convex shapes also with a little

modification. Non-convex shapes can be decomposed into

a combination of convex shapes.

SAT is particularly great for narrow-phase collision

detection because it provides precise testing, and is usable

on more than a bounding box, as SAT is able to detect

collision on irregular convex polygons and other shapes

that cannot be enclosed by simple bounding box like

AABB. Additionally, SAT can calculate the Minimum

Translation Vector (MTV), which is the smallest

adjustment required to separate overlapping objects, this

makes it useful for realistic collision response in video

games.

Figure 2. Illustration of Collision in SAT

Source: https://dyn4j.org/assets/posts/2010-01-01-sat-

separating-axis-theorem/sat-ex-3.png

III. METHODOLOGY

The experiment in this paper will be focused on

developing and analyzing the results of a program to

simulate and demonstrate the proccess of collision

detection algorithms. The simulation will be limited to

interactions of objects within 2 dimensional space as they

are computationally less complex and more accessible for

visualization. This allows for the focus to stay on

simulating the algorithms and less on video game

development

As explained in the previous chapter, the two algorithms

that will be used for the collision detection simulation are

Axis-Aligned Bounding Box (AABB) and Separating Axis

Theorem (SAT). The two algorithms are used because they

are among the most popular collision detection algorithms

with AABB’s simplicity complementing SAT’s precision

to create a balanced collision detection system.

To emphasize each algorithms and also for modularity

of the program, it will be separated into three parts:

1. AABB Simulation, to illustrate the workings of

AABB algorithm and the simplicity of broad-phase

collision detection.

2. SAT Simulation, to demonstrate how SAT

algorithm works and how it is used in the narro-

phase of collision detection.

3. Main Game, to demonstrate how AABB and SAT

can be combined to create a robust parry-based

combat system.

Each of these simulations will involve interactive

elements where users (or players) can manipulate 2D

objects within the simulation to observe how the algorithm

detect collisions in real-time. Additionally, each simulation

will also display visualization of vectors calculations,

providing insight into how mathematical computations are

performed when collision occurs.

For the testing of the simulation program, both

algorithms will be analyzed in detail, highlighting their

difference in terms of efficiency and accuracy with more

insights and how they can be used optimally to make a

better parry-based combat system in games and ultimately

how these algorithms can make for a better gameplay

experience for games in the Sekiro-like genre.

IV. IMPLEMENTATION

For the implementation of the simulation, the

programming language that will be used is Python, with the

Pygame library for game logic and visualization, along

with NumPy for efficient mathematical calculations. As

mentioned in section III, the simulation will be structured

into three main modules, each focusing on different aspects

of of collision detection: AABB Simulation, SAT

Simulation, and the Main Game. These modules are

designed to work both independently and cohesively,

providing clear demonstration fo the algorithms principles.

Besides the three main modules, there are supplementary

modules to cover the game logic shared between the main

modules. Here is how each module is to be implemented:

A. Game Logic
This module handles the behaviour and representation

of objects used in the simulation. The object that will be

used for the simulation is a pentagon as the core shape

paired with a bounding box for AABB representation.

Collisions are calcualted using the bounding box for

AABB, while the SAT collisions will be calculated using

the pentagon.

Figure 3.The Shape Used in the Simulation

Source: Author’s Document

The bounding box is calculated as a rectangle that

encloses the pentagon. Although AABB tipically tightly

encloses the object, the boudning box used in the

simulation has a tiny amount of offset as padding to

account for game logic (which will be explained in Main

Game section later). Although in the AABB collision

calculation the center point representation is used, for the

visualization around the pentagon, the bounding box is

defined by its minimum and maximum x and y coordinates:

𝑚𝑖𝑛𝑥 = 𝑚𝑖𝑛𝑥𝑖
− offset, 𝑚𝑎𝑥𝑥 = 𝑚𝑎𝑥𝑥𝑖

+ offset

https://dyn4j.org/assets/posts/2010-01-01-sat-separating-axis-theorem/sat-ex-3.png
https://dyn4j.org/assets/posts/2010-01-01-sat-separating-axis-theorem/sat-ex-3.png

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

𝑚𝑖𝑛𝑦 = 𝑚𝑖𝑛𝑦𝑖
− offset, 𝑚𝑎𝑥𝑦 = 𝑚𝑎𝑥𝑦𝑖

+ offset

where (xi,yi) are the vertices of the pentagon. The bounding

box is then represented as:

𝑏𝑜𝑥 = 𝑅𝑒𝑐𝑡(𝑚𝑖𝑛𝑥 , 𝑚𝑖𝑛𝑦, 𝑚𝑎𝑥𝑥 − 𝑚𝑖𝑛𝑥 , 𝑚𝑎𝑥𝑦 − 𝑚𝑖𝑛𝑦)

where Rect refers to a rectangle defined by its top-left

corner (minx,miny), and its width and height. The code

implementation for the pentagon object is shown in Fig. 3.

Figure 4. Implementation of Pentagon Object

Source: Author’s Document

Moving forward, for the sake of brevity,

implementation details related to the game logic (except

for the Main Game) will not be discussed in this paper, as

they are not directly relevant to the main focus. The full

source code can be found in the appendix for further

reference.

B. AABB Simulation
The Axis-Aligned Bounding Box (AABB) algorithm is

used for efficient broad-phase collision detection in the

simulation. Collision is detected by comparing the

positions and dimensions between bounding boxes of

different objects. The detection is calculated using the

distance between the center point of different objects, and

also the total sum of their half sizes.

To calculate the relative positions, the center of each

bounding box is defined by:

center𝑥 = 𝑥 +
𝑤𝑖𝑑𝑡ℎ

2
, center𝑦 = 𝑦 +

ℎ𝑒𝑖𝑔ℎ𝑡

2

where (x,y) represents the point of the top-left corner of the

box. As for the half-sizes, it is computed by:

halfsize𝑥 =
𝑤𝑖𝑑𝑡ℎ

2
, halfsize𝑦 =

ℎ𝑒𝑖𝑔ℎ𝑡

2

The distance will then be calculated according to (5), with

the distances of the center along the x-axis and the y-axis

being calculated separately. The collision is then calculated

by comparing these distances to the sum of the half sizes

of the objects for which collision is checked for. Collusion

occurs if this condition is satisfied:

distance ≤ halfsize1 + halfsize2 (8)

where the conditions should be fulfilled by both the x-axis

and the y-axis. Implementation of AABB collision is

shown in Fig. 4.

Figure 5. Implementation of AABB Collision

Source: Author’s Document

To better demonstrate the proccess of AABB

algorithm, a visualization program was created using

Pythons’s Pygame library. The program features two

pentagons, colored red and blue, which can be interactively

moved around by the user to simulate collisions. The

program also displays the distance between the center of

the two pentagons along with their total half size, for both

the x and y axes. On top of that, a collision alert is shown,

with the text “Collision!” appearing top right while the

color of the bounding boxes lightup if collision occurs.

(a) (b)

Figure 6. (a) The Program’s Display Under Normal

Conditions. (b) The Program’s Display When Collision

Occurs.

Source: Author’s Document

C. SAT Simulation
The Separating Axis Theorem (SAT) is used for precise

detection for collisions between the convex shapes (in this

case the pentagons) as opposed to the bounding boxes.

SAT uses projections of the shapes onto separating axes,

to test if they all overlap. This algorithm simplify collision

checking by reducing the shapes into 1D lines to compare

along the axes.

In this simulation, SAT is implemented by first

calculating the normals of each edge of the pentagon. Here,

the normal is a vector perpendicular to the edge, which is

used as the separating axes to ensure the projection are

performed along critical directions for detecting overlaps.

The pentagon will then be projected onto each normals to

check for gaps between the projections. If no gaps are

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

found on any of the axes, then a collision is determined

to have occurred.

The edge of the pentagons are defined as the difference

between consecutive vertices:

edge = (𝑥2 − 𝑥1, 𝑦2 − 𝑦1)

where x1, y1 are the coordinates of the starting vertex of

the edge, x2, y2 are the coordinates of the next vertex

directly connected to the starting vertex. From the

calculated edge of the pentagon, the normal for each

edges are then determined as:

normal = (−edge𝑦 , edge𝑥)

after calculated, the normals are then normalized to ensure

they have a magnitude of 1, using (4). These normals are

then used as then used as the separating axes, on which the

pentagon will be projected. Each vertex of the pentagon is

projected onto the normals using (7). For each of the axis,

the minimum and maximum projection values are

calculated, representing the range of the pentagon’s

projection. The implementation for these calculations is

added as methods into the Pentagon class shown

previously.

Figure 7. Implementation of Normals and Projections

Calculations

Source: Author’s Document

The projection values are then compared with the

projections of the other pentagon, to look for gaps. A gap

between two projections occurs when the maximum of one

projection is completely to the left or to the right than the

minumim of the other shape. A gap is detected if either of

the following conditions is true:

max1 < min2 or max2 < min1

where max and min represents the maximum and minimum

values of the projections, and the subscript indicating the

pentagon to which they belong. These gap are then used to

determine if a collision occurs, by iterating over each

projections. If gap is found on any axis, the iteratiion stops,

and it is determined that no collision is happening. The

implementation for the SAT collision detection is shown in

Fig. 8.

Figure 8. Implementation of SAT Collision Detection

Source: Author’s Document

The SAT simulation follows AABB simulation, with a

few tweaks and adjustments to account for unique aspects

of the SAT algorithm. Unlike AABB, SAT considers the

orientation of the pentagons, requiring the ability to rotate

the pentagon for better visualization. The user can not only

move the pentagons around the screen, as in the AABB

simulation, but also rotate them to see how SAT handles

collisions.

Figure 9. Interface of the SAT Simulation Program

Source: Author’s Document

As shown in Fig. 9. The simulation displays the normal

vectors of the pentagons, allowing users to observe how

they change as the pentagons are rotated Additionally the

program includes buttons to show or hide the bounding

boxes and the normal lines for better visualization. Fig 10.

Shows how the program looks when a collision happens,

with the pentagons in a rotated position, and the bounding

boxes hidden to show the pentagons better.

Figure 10. Program’s Appereance with Collisions

Between Rotated Pentagons

Source: Author’s Document

D. Main Game

The Main Game serves as a culmination for the

collisions detections algorithms, combining AABB and

SAT to create a functional demonstration of a parry-based

combat system. This interactive simulation shows how the

algorithms seamlessly integrate to craft complex gameplay

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

scenarios, enabling real-time collision detection, enabling

precision for an engaging parrying mechanics.

The game features a single boss fight, with both the

player and the boss represented as pentagons with a certain

amount of hitpoints. The player controls the red pentagon

using the keyboard, evading the boss pentagon as it chases

the player around the arena. If the boss touches the player,

the player takes a hit, reducing their hitpoints. On the other

hand, the player has an opportunity to parry the boss just

before it touches the player by pressing the spacebar.

Successfully parrying the boss’s attacks will subtract the

boss’s hitpoint. The game ends when either the player’s or

the boss’s hit point reach zero.

Figure 11. Screenshot of the Game During Combat

Source: Author’s Document

Figure 12. Screenshot of the Game’s Victory Screen

Source: Author’s Document

AABB and SAT are both used in the combat

mechanisms to detect collisions between the boss and the

player. First, AABB utilizes bounding boxes to detect for

overlaps. If the bounding boxes overlap, a parry window is

initialized, which remains for 60 frames (1 second), giving

the player an opportunity to parry the boss. Following this,

the program then checks for a more precise collision

between the pentagons using SAT, for which the collision

is treated as a hit to the player. Both kinds of collisions (hit

and parry) will result in a knockback to either the player or

the boss, following the subtraction of their hitpoints. The

implementation of the combat system is shown in Fig. 13.

Figure 13. Implementation of the Game’s Combat

System

Source: Author’s Document

Please note that the game loop and most utility

functions related to routine game logic are not shown in

this paper. This is done to keep the paper concise, as this is

not a paper for general game development, but only for the

collision detection aspect of it. For a complete overview,

refer to the appendix to access the full source code.

V. CONCLUSION

Linear algebra is extremely useful for optimizing

collision detection systems in video games, by leveraging

algorithms like AABB and SAT. These methods simplify

complex geometric interactions into manageable and

compact computations to create an efficient and precise

collision game mechanics. The simulation developed for

this paper demonstrates how AABB and SAT can work

together as complementary tools to optimize collision

detection for real-time gameplay. These techniques, along

with other, can be employed to enhance game mechanics

in video games, particularly those relying on precise timing

and accuracy. These games require responsive and

accurate collision detection to ensure game mechanics are

implemented properly. Sekiro-likes are a prime example of

such games, where parrying, timing, and accuracy are

central to the gameplay experience. Having precise

collision detection system in these games ensures that

combat mechanics function seamlessly, creating an

engaging and rewarding experience.

VI. APPENDIX

a. Github repository for this project:

https://github.com/grwna/SplitSecond-collision-

detection-game

VII. ACKNOWLEDGMENT

The author would like to begin by expressing heartfelt

gratitude to God for His endless blessings and guidance, as

without it, this paper would not have been written

succesfully. The deepest thanks also extended to my

lecturer for Linear and Geometric Algebra, Ir. Rila

Mandala, M.Eng., Ph.D. along with Dr. Ir. Rinaldi Munir,

M.T. for their dedication to share knowledge and guide

students with patience and expertise.

https://github.com/grwna/SplitSecond-collision-detection-game
https://github.com/grwna/SplitSecond-collision-detection-game

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

The author would also like to thank famuly and friends

for their constant and unwavering support and

encouragement, which have been very important

throughout the writing of this paper, and this academic

journey. Finally, the author hopes that this paper provides

readers with valuable insights into the world of game

development and linear algebra.

REFERENCES

[1] Dyn4j, "SAT (Separating Axis Theorem)," Dyn4j, Jan. 2010.
[Online]. Available: https://dyn4j.org/2010/01/sat/. [Accessed: Dec.

29, 2024]

[2] Mozilla Developer Network, "3D Collision Detection," Mozilla,
[Online]. Available: https://developer.mozilla.org/en-

US/docs/Games/Techniques/3D_collision_detection. [Accessed:

Dec. 28, 2024].
[3] Pygame Community, Pygame Documentation. [Online]. Available:

https://www.pygame.org/docs/. [Accessed: 30-Dec-2024].

[4] R. Munir, Vektor di Ruang Euclidean (Bagian 1), Institut Teknologi
Bandung. [Online]. Available:

https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/20

24-2025/Algeo-11-Vektor-di-Ruang-Euclidean-Bag1-2024.pdf.
[Accessed: 30-Dec-2024].

PERNYATAAN

I hereby declare that this paper is an original work, written

entirely on my own, and does not involve adaptation,

translation, or plagiarism of any other individual's work.

Bandung, 30 Desember 2024

M. Rayhan Farrukh, 13523035

https://dyn4j.org/2010/01/sat/
https://developer.mozilla.org/en-US/docs/Games/Techniques/3D_collision_detection
https://developer.mozilla.org/en-US/docs/Games/Techniques/3D_collision_detection
https://www.pygame.org/docs/
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2024-2025/Algeo-11-Vektor-di-Ruang-Euclidean-Bag1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2024-2025/Algeo-11-Vektor-di-Ruang-Euclidean-Bag1-2024.pdf

